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FOREWORD 

This document is the First  Semiannual Report prepared by Republic 
Aviation Corporation under NASA Contract No. NASS-2605, "Research Re-' 
garding Guidance &d Space Flight Theory Relative to the Rendezvous Prob- 
lem. 
of the Aeroballistics Laboratory, George C. Marshall  Space Flight Center. 

The contract was initiated and is monitored by W. Miner and R. Hoelker 

The document will appear in slightly different format as a part of PROG- 
RESS REPORT NO. 2 ON STUDIES I N  THE FIELDS OF SPACE FLIGHT AND 
GUIDANCE THEORY, sponsored by the Aeroballistics Division of the Marshall 
Space Flight 'Center. 

The report was prepared by Dr. Mary Payne and Mi?. Samuel Pines of 
Republic's Applied Mathematics Section, Applied Research and Development 
Center. 'The authors wish to express their appreciation for many helpful 
discussions with Mr. Elie Lowy and Dr. George Nomicos and they especially 
want to thank Dr. John Morrison whose comments, from the, inception of the 

problem, have been most illuminating. 
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NOTA TION 

1 

i 

Iu_ Position vector of the vehicle reIative to the barycenter in a coordinate 
system fixed in space 

R .  - 
1 

Position vector of the vehicIe relative to the earth 

R - 
2 

Position vector of the vehicle relative to the moon 

R' Position vector of the vehicle relative to the barycenter in a rotating 
system 

- 
R - Position vector of the vehicle relative to the midpoint of the earth- 

moon line 

. r  Magnitude of El 
1 

r Magnitude of R 
2 -2 

sz Angular velocity vector of earth-moon system 

w Magnitude of w 

P ' Gravitational constant times mass of the earth 

P' Gravitational constant times mass of the moon 

0.e Lagrangian function 

P - Momentum vector 

H Hamiltonian function 

qi 

Qi 

Pi 

pi 

Generalized coordinates conjugate to pi  

Generalized coordinates conjugate to Pi 

Generalized momenta conjugate to qi 

Generalized momenta conjugate to Qi 



Time-dependent generating function 

Time 

Integrable part of the Hamiltonian 

Disturbing function 

Energy constant for HI 

Time-independent generating function 

Action variables 

Angle variables 

Frequenqies for two fixed center problem 

Elliptic coordinates 1 
) .prolate spheroidal 
) coordinates 
) Angle, measured around x, -axis 

Half the distance between earth and moon 

Momenta conjugate to prolate spheroidal coordinates 

Rectangular coordinates in a system with earth at (c, 0 ,  o), moon 
at (-c, 0 ,  0 )  and - in the z direction 

Angular momentum about the line of centers in the two fixed 
t center problem 

Third dpamical constant of motion of the two fixed center problem 

Fundamental quartic associated with q1 

Fundamental quartic associated with q2 

Parameter in terms of which coordinates and time of the two fixed 
center problem are given 

vi 



2 '  
r i Roots of R (q,) = 0 

n 

Roots of S4(q2) = 0 'i 

n i Coefficiht of linear term in qi contribution to time as a function 
of u 

m. Coefficient of linear term in qi contribution to (b as a function 
1 of u 1 

FiW Periohic term in time due to qi 

G i W  Periodic term in Q due to qi 

Quarter period of q1 elliptic functions 

Quarter period of q2 elliptic functions 

Coordinate conjugate to h 

K1 

Kz I 

Qh 
Coordinate conjugate to 01 

Coordinate conjugate to /3 
Qa 

Qs 
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Summary 

This report contains a development of the classical Hamilton-Jacobi 
perturbation techniques, applying the known solution of the Two Fixed Center 
Problem to the Restricted Three Body Problem. 

SECTION I - INTRODUCTION 

' This report contains an outline of the development of a perturbation 
procedure for solving the restricted three body problem, using the solution 
of the two fixed center problem as an intermediate orbit. In the restricted 
problem, it is assumed that the two primary bodies move in circles about 
their center of mass, the barycenter. The primary bodies will be fixed in a 

coordinate system rotating with their angular velocity, so that the use of the 
two fixed center problem is immediately suggested. The two fixed center 
problem was first treated by Euler, who discovered that its equations of 
motion are separable in prolate spheriodial coordinates. A very complete 

This treatment covers some of the same ground as this report. It is from the 

6 

discussion of the two fixed center problem.has been given by Charlier (1) . 
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Hamiltonian point of view and includes a discussion of the action and angle 
variables, and the way in which the two fixed center problem would be used 
as a basis for a perturbation theory for the restricted problem. The only 
thing missing from Charlier's treatment is an explicit solution of the two 
fixed center problem, which would be necessary for the actual application to 

the restricted problem. Formal expressions for the action and angle variables 
are obtained from a more modern point of view by Buchheim(2). Brief 
discussions of the two fixed center problem are given in many stan&rd text 
books such as Wl~ittaker(~),  Landau and Lifschitz(*) and Winb~er(~) .  The 
explicit solution of the two fixed center problem has been obtained by Phes 
and Payne@). In the present report, this solution w i l l  be combined with a 
Hamiltonian development ok the problem to show how perturbation equations 
for the restricted problem may be obtained. A different development has been 
carried out recently by Davidson and Schul~-Arenstorff(~). In this theory, 
the initial conditions of a two fixed center problem are used as parameters 

, and a first order correction for the restricted problem is obtained in closed 
form. Second-order corrections are obtained by a numerical curve-fitting 
scheme. 

t 

In this report, Section II will contain a discussion of the restricted 
problem, and the way in which the two fixed center problem wiII be used. In 
Section III, the solution of the two fixed center problem will be outlined in 

I 

sufficient detail for the determination of the action and angle variables, which 
is carried out in Sections IV and V. Finally in Section VI a summary will 
be given of the essential steps still necessary to obtain the solution of the 
restricted problem. 

2 
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SECTION II - THE RESTRICTED PROBLEM 

The equations of motion. of the restricted problem are 

(1) 
.. R-1 $2 - R = - p 3  - p ' 3  

2 r 1 r 
I 

where - R is the position vector of the vehicle in a coordinate system fixed in 
space,' - R1 and - R2 are respectively the position vectors of the vehicle from 
earth and boon (withmagnitudes rland r2), and p and pt are the gravita- 
tional constant times mass'of the earth and moon, respectively. Since the 
barycenter (center of mass of earth and moon) may be regarded as a point 
fixed in space, the vector R - will henceforth be regarded as relative to a 
system'fixed in space with origin at the barycenter. The earthoand moon are 
taken as moving in circles about the barycenter with angular velocity vector 

- a. To use the two fixed center problem as an approximation to the restricted 
problem, it is necessary to write the equations of motion in a coordinate 
system in which the earth and moon are  fixed. Such a system is one rotating 
about the barycenter with angular velocity e relative to the fixed system. 
Denoting the position vector in the rotating system by Rt,  - the equations of 
motion (1) become 

It is readily shown that the Lagrangian for the equations of motion (2) is 

3 
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and hence the momentum vector conjugate to the position vector R' - is given 

by 

- P = g r a d k '  &= - R " t  Q - X R (4) 

and the Hamiltonian for the problem is 

and the Hamiltonian equations are 

E1 5 2  P = -g radR/  H = - - 0 x ,P - p 3  -1.1'- 3 
r. r,, I L 

and 

It will be noted that Eq. (7) is equivalent.to Eq. (4), and that if ,P is replaced using 

Eq. (4), then Eq. (6) will yield the equations of motion (2). 

The solution of the restricted problem will be carried out by making use of , 
a transformation theorem (Reference 1, Chapter 11 and Reference 12, pp 237 to 
246) which states that if the Hamiltonian of a system is H (qi, pi, t) with qi and 
pi canonically conjugate coordinates so that the Hamilton equations 

a, H , p i = - -  a H  Qi = - a Pi a qi 

are satisfied and if # (qi, Pi, t) is any function, then the variables Q, and Pi 
defined by 

are canonical variables for a new Hamiltonian 

- H = H  +a . a t  

4 

(9) 



t regarded as a function of Qi, Pi and t, so that 

I 
I Now let the Hamiltonian be separated into two terms 

with HI independent of the time and such that the partial differential equation 

possesses a solution for J1 1. It is seen that if the function $I 
formation theorem then the Hamilton equations become 

is used in the trans - 

a h  
a H2 - a (HI + H 2  + r) I Qi - a pi a pi 

= -  

8 

I 
by virtue of the defining Eq. (13) for $ 
that, since H is independent of time, 

. Further, from Eq. (13), it is evident 8 
8 1 

I 
II 

$ = - ht + W(qi Pi ) 
9 

. with 

and the momenta Pi must be identified with the constants of integration of Eq. 
(1s) and h, the separation constant for the time. This is not to be interpreted as 
meaning that the Pi are constants of the motion for the Hamiltonian H. If this 
were  so, the right-hand sides of Eq. (14) would have to vanish. What the solution 
of Eq. (16) for W does is to specify a function of qi and three new variables Pi. 

m 
1 
8 
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This function may be used to invert Eqs. (9) to obtain qi and p. in terms of the 
new variables Pi and three others Qi. These expressions for q. and p. may now 
be inserted in H2 for use in Eqs. (14) from which Qi and Pi may now be obtained 
as functions of time. The solution of the problem associated with H will then be 

1 

1 1 

given by substituting the solutions Qi and Pi of Eqs. (14) in the expression for 
q. and p.. 
1 1 

To actually carry out the inversion of Eqs. (9) it. must be noted that the 
functional form of $ does not depend on the disturbing functiQn ultimately to 
be used. It depends rather on how the identification of the Pi is made with the 
integration constants arising in Eq. (16). The conventional procedure is to re- 
gard H1 as the Hamiltonian of a new problem and identlfy the Pi with the action 
variables Ji of this new problem. The action variables are always three inde- 
pendent functions of the integration constants and hence are themselves constant 
for the problem associated with HI. Once the functional relation between the 
Pi and the integration constants is determined, .by identifying the Pi with the 
action variables Ji of H1, the conjugate coordinates Qi are defined by Eq. (9). 

It will always happen #at Pi and Qi so defined are constant if the Hamiltonian 
is H1 because from Eq. (13) . 

= o  
) 

ah . a ( H 1 + a t  
a pi Q. = 

1 

(17) 

Once the functional relation between qi and pi and Qi and Ji is estabiished, 
however, the problem associated with H1 is no longer of interest. The disturbing 

function H2 is expressed in terms of Qi and Ji and the solution of the problem 

associated with H is obtained by integrating Eqs. (14). 

A slightly different formulation of the problem is obtained if the time inde- 
pendent function W of Eq. (15) is used as the generating function of the trans- 
formation rather than $,. The variables wi conjugate to the action variables 
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Ji are the angle variables of the problem associated with H1. The relations 
between the wi and the Qi are given by 

a h  
i = Q i + t -  = U i t  + Q 

aw a ($1 4. h t )  
w = - =  
i aJi a J~ a Ji 

with 
a h  vi = + -  a Ji 

being functions of the action variables. The perturbation equations for these 
variables will  be given, according to the transformation theorem, by 

since W is independent of time and H 
and not on the angle variables. The advantage of using the angle variables rather 
than the Qi is that it will  always be possible to expand H2 in a multiple Fourier 
series in the angle variables and eliminate its explicit dependence on time. 

= ' h  depends only on the action variables 1 

To use the two fixed center problem to solve the restricted problem, the 
Hamiltonian (5) for the restricted problem may be separated into terms H1 and 
H2 as follows: 

H 2 = - C 2 . R ' x P  - -  - (22) 

If H is regarded as a Hamiltonian, the associated Hamilton equations are 1 

R'= - grad H = P (23) - P 1 -  

7 



and 

These last equations are  just the equations of motion for the two fixed center prob- 
lem, so that H1 is the Hamiltonian of the two fixed center problem. Thus the pro- 
cedure will be first to find the action and angle variables of the two fixed center 
problem and then express the disturbing function - 

H2 = - g  * - R' X - P 

in terms of these variables. 

(25) 

c 

Before proceeding with the details of this proceGdre, it is desirable to make 
two further transformation of the coordinates. 
system with the origin at the midpoint of the earth-moon line with the earth and 
moon on the x-axis at (c,O,O) and (-c,O,O) respectively. The distance between 
the earth and moon is thus 2c. The z-axis will be taken in the direction of 3 . 
The only term in the Hamiltonian affected by this transformation is the Q _R'X ,P 
term in which R '  - is measured from the barycenter. From Figure I it is evident 

The first will be to a coordinate 

Vehicle 

Figure I 

8 



' - ? ', 0, 0) the position vectors of the b + c 1  that, since the barycenter is at the point (c 

vehicle relative to the midpoint are related by 

where i is the unit vector in the x-direction. Thus the disturbing function 

becomes ' 

where. j is a,unit vector in the y direction. 

The second transformation will be from rectangular to prolate ellipsoidal 
coordinates, in which the Hamilton-Jacobi equation for the two fixed center prob- 
lem is separable. ,This transformation may be effected by the generating function 

2 2 2 
'F = cq1q2 Px-t d(q12- 1)(1 -q2 )*coscp P + d ( q l  -1)(1 -q2 S h c p  pz Y 

with the new coordinates ql, q2, cp ,  pl, pz, and p related to the old Ones X , Y ,  

z, Px, P , m d P Z  by 

' 

cp 

Y 

a F  x = -  
a px 

y = -  a F  
a p  

Y 

a F  z =- a 'Pz 

a F  = -  
a q1 P1 

2 F  
P2 = - 

a s 2  

a F  
Pcp = - acp 

9 



From the equations for x, y, and z it is seen that 

x = c q q  1 2  

2 2 
z = c "Iql - 1)(1 - q2 ) sin cp 

In this system the surfaces q1 = const 2 1 are ellipsoids of revolution about the 
x-axis confocal about the earth and moon. The limiting surface q1 = 1 is the 
portion of the x-axis between the earth and moon, and the ellipsoids increase in 
size with increasing ql. The surfaces -1 g q2 = const 1 are hyperboloids of 
revolution about the x-axis, confocal about the earth and moon. The limiting 
surfaces q1 = 1 and q2 = -1 are the portions of the x-axis to the right of the 
earth and to the left of the moon, respectively. The surface q2 = 0 is the y-z 
plane and surfaces corresponding to positive values of q2 a re  hyperboloids con- 
cave towards the earth while those corresponding to negative values of q, are 
concave towards the moon. The angle q? is measured in the y-z plane about the 
x-axis and is zero in the portion of the x-y plane for which y > 0. From Eq. (30), 
it is easy to show that rl and r2 which appear inthe Hamiltonian (5) are given 

bY 

The equations for ply p2, pcp are 

10 



I Inverting these equations to obtain Px, P and Pz in terms of pl, p2 and P One 
Y cp 

obtains for H1 

1 .  

and for the disturbing function 

This completes the preliminary discussion of the problem. The following sections 
coatain the solution of the two fixed center problem which will be useful in the sub- 

sequent determination of the generating function W from Eq. (16) and the action 
and angle variables for.the two fixed center problem which will be the wi and Ji of 

the perturbation Eqs. (19). 

11 



SECTION III - SOLUTION O F  THE TWO FIXED CENTER PROBLEM 

The Hamiltonian for the two fixed center problem, obtained in the last sec- 
tion is 

The generating function W(ql, q2, cp,  P1, P , P ), which will 
to obtain the wi and Pi for  the perturbation equations is also 

2 3  ultimately be used 
a v e g  convenient 

device for obtaining a direct solution to the two fixed center problem. Recalling 
that for the transformation to be canonical, one must have 

'OW 
P2 = - a 92 

and 

aw 
Qi  =m 

1 
(37) 

Replacement of pl, p2 and p by the partials of W with respect to ql, q,, and $9, 
respectively, in Eq. (35) gives a partial differential equation for W which is sepa- 

cp 

rable. That is, a solution of the form 

exists. It is a fairly simple matter to verify that 

12 



n n 

, 

where ' ' 

In Equations (40) and (41), h is the constant energy of the two fixed center problem 
and is to be identified with the constant h of Equation (15) in the previous section. 
The separation constants are  a and /3. It is easily shown that Q is the x-component 
of angular momentum about the line of centers. The constant 
interpretation. 

has no such simple 

. At this stage everything necessary for the solution of the two fixed center prob- 
lem is available; further discussion of the generating function will be deferred to 
the next section. 

The. Hamilton equations for the two fixed center problem give the time de - 
rivatives of q q and cp as 1' 2 

n 

13 



Combination of these equations with Equation (39) yields 

A preferable form for these equations is the following in which a parameter 
u is introduced which completes the separation of the variables: 

1 d q = -  

From Equation (44), which le 

+ 2 ] d u  
1 - 9 2  

d s  to elliptic int-gals  
and q2 turn out to be expressible as elliptic functions of u. 

f the first kind, q1 
Using these expressions 

for  q1 and q, in Equations (45) and (46), it is then possible to obtain t and cp as 
functions of u. The integration of Equations (45) and (46) involves elliptic integrals 
of the second and third kinds. 

The form of solution of Equation (44) depends on the nature of the roots of 
2 the quartic expressions R2 and S . These roots are uniquely determined by the 

14 



I 
I 

three dynamical constants h, c11 and 8 .  It is shown in Reference 6 that if 
h < 0, R 
two lie in the interval (.t 1). Further, R is positive between the largest roots 
and also between the smallest. Since, however, q1 must exceed unity, it 
follows that q1 is constrained between the largest roots. Thus, if the roots of 
R 
said that 

2 must have four real roots, two of which exceed unity and the other 
2 

2 in order of decreasing magnitude are  denoted by rl, r2, r3, r4 it may be 

- l < r  < r  < l < r  < q l < r l  4 3 ' 2  (47) 

This conclusion may be stated a little differently: the bounds r 
represent two ellipsoids (the larger corresponding to r ) which bound the region 
in space in which the vehicle may move. 

and r 1 2 on q1 

1 

The corresponding results for the quartic S2 are more complicated: none 
of the roots exceed unity and at least two lie in the interval (* 1). The other two 
may also lie in this interval, may be real and both less than -1, or may be com- 
plex. The quartic is positive between the two largest roots and between the two 
smallest, if they are real. Since q2 must lie in the interval (& 1) it follows that 
the orbit is constrained between the two largest roots or between the two smallest 
if they also lie in the (* 1) interval. Lf all four roots of S are  in (* 1), knowledge 
of the position of one point of the orbit specifies whether q2 is constrained between 
the largest or the smallest roots; transitions from one band to the other cannot 

2 2 occur, since if S becomes negative, q2 becomes imaginary. The roots of S 
in the interval (&) correspond to hyperboloids bounding the motion in space. 

2 

Summarizing the above results for negative energy, two possibilities for 
bounds on the orbit occur. These are shown in Figures 11 and III where the shaded 
areas are regions in which motion may occur. 

15 
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1 - 1 < , r  < r  < l < r 2 < q l < r  4 3  
either s3, s4 < - 1 

{ or s3, s4 complex 
- 1 < s2 < q2 < s1 < 1 

Figure II 

Figure 111 



I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2 2 If one thinks of h, 0 and p ,  which determine all the roots of R and S as 
being three dynamical specifications of a two fixed center orbit, it is clear that 
any remaining specifications must not violate the bounds on the region in which 
the motion can occur. That is, these bounds impose constraints on any further 
specificatidns. Actually, not even h, a and f l  can be arbitrarily selected: they 

2 2 must lead to roots of R satisfying Equation (47) and roots of S satisfying one 
or  the other of the $allowing: 

(a) -1Ss s s  <landeither s3, s4 < 1 or s3, s4 complex 
(48) 

2 1  

@) - 1 s s  ~ S 3 < S 2 h S 1 ~ 1  4 

2 If the energy is positive, it may be shown that R has one root, say r1 ex- 
ceeding unity and is positive for q1 exceeding rl. The other roots are all less 

in the interval (kl), and one on each 2 than 1. The quartic S has two roots s3 < s2 
side of this interval. It is positive for s3 < q2 < s2. Thus in this case the motion 
must take place in the unbounded region shown in Figure IV. 

Figure N 
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I 

of u. 
In all 

As noted above, q1 and q2 are expressible in terms of elliptic functions 

cases, see Reference 6, 

The particular elliptic function occurring depends on the nature of the roots. 

Ai f  ( ai ( u  + Bi))+Bi 
q: = (49) 1 ci f ( a i  ( u  +pi ,  ) - 1 

The Ai, Bi, ai are constants depending only on the roots and hence on h, a and 

p .  The constants pi  depend on h, a and f l  as well as whatever additional spec- 
ifications are made to select a particular orbit. For ql, the function f is an sn 
or  dn function according as h is negative o r  positive. For q2, h C 0 ,  f is an 
sn or cn function according as all four or  only two of the roots are real and if 
h > 0, f is a dn function. It is evident, of course, that q1 and q2 are individuaily 
periodic in the variable u. The periods of q1 and q2 are, however, in general 
non-commensurable, so that the motion in space of the vehicle will, in general, be 
nonperiodic. The quarter periods of q1 and q2 .are usually denoted by K1 and &, LI 

respectively, and it may be shown that these quarter periods depend only on the 
roots of R 

in  which the pi occur in Equation (49), it is evident that they represent a phase. 
In fact, it is assumed in Equation (49) that u = o corresponds to some point on 
the orbit, say the initial point, and the pi  represent the variation in u required 
to get from this point to one of the extreme values of qi - that is, to a point of 
tangency with one of the bounding ellipsoids for ql, and with one of the bounding 
hyperboloids for q2. 

2 2 and S , respectively, and hence only on h, 01 and 6 .  From the way 

The integration of the equations for time and cp leads in all cases to the 
following forms (consult Reference 6) 

t = (n, 4. - n2) u + F1@) + F2 (u) (5 0)  

cp = (ml + m2) u +GI@) + (51) 

2 
where n and m1 are constants depending on the roots of R , and % and m2 depend 1 

18 



2 on the roots of ,S . 
periodic functions of u with period 2K1, while F2(u) and G2(u) are periodic 
with period 2 3 .  

For negative h, the functions F1(u) and G1(u) are 

For positive h, the functions Fi and Gi become logarithmic. 

1 
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SECTION IV - DETERMINATION OF THE GENERATING FUNCTION 

The differential equations for the generating function, Eqs. (39), may be 

written 

These are  ordinary differential equations, and integration again leads to elliptic 
integrals. Before carrying out the integration, however, some discussion of the 
limits on ‘the integrals is necessary. It will be recalled that the generating function 
was to be a function of six variables. 

(53) 

and the differential equations (52) give only three of the six pa;*tial derivatives of 
W, Now the dependence of W on ql, q2 and q can be carried by the upper limits of 
tP.2 integrals resulting from Eqs. (52). These upper limits should be simply ql, 
q2, and cp, respectively. , Recalling further that the momenta Pi are supposed to 
be constants, and noting that three independent constants h, CL and 6 already are 
explicitly in Eq. (52), it is evident that these three constants or some three in- 
dependent €unctions of them must be identified with Pi. It is convenient at present 
to identify h, CL and themselves with Pi and defer to a later stage in the develop- 
ment any more complicated identification. If this is done, it now becomes obvious 
that the lower limits on the integrals must be either functions of h, 01 and fi or ’ 

absolute constants. This is so  first because W is a function only of ql, q2, cp 

20 



I '  
and the Pi, ahd, since the integrals will,be functions of their liiits, only these 
quantities and absolute constants may be inclnded in the limits. Secondly, the , 

upper limits have already been taken as  ql, q2, and p, and recalling that the 
partials of W with respect to ql, q2 and q~ niust be p p2 and psos no further 
dependence of W on ql, q2 and cp can be allowed without modifying the p's from 
which the equations (52) for W were obtained in the first  place. The only remain- 
ing problem, then, is to select lower limits which depend only on h, Q and 6. For  
the integral for W1, the variable is q1 which has bounds on its variation. The 
bounds depend on h, 01 and 6, and since rl is a bound whether the energy is 
positive or  negative, it is a satisfactory lower limit. For W2 the bounds vary 
with the particular conditions of the problem. However, for  orbits approaching 
both Earth and Moon, the bound s2 always occurs, and will be selected as the 
lower limit. For W3, the situation is .a little different. The variable is cp, and 
reference to Eq. (43) shows that cp has the sign of Q and is thus monotone. Hence 
any absoiute constant is acceptable as a lower limit and 0 will be selected. 'The 
generating function may now be written: 

1' 

< 

a 

where W is integrable directly. It might be remarked at  this stage that there is 
an essential difference between this generating function and the'corresponding 
function for  the Kepler problem. The upper limits in the integral occurring in 

both generating functions may be regarded a s  the coordinates of a point on the orbit. 
In the Kepler problem, the lower limits correspond to the perigee distance for the 
radial integral and io zero for the two angle integrals. This may be regarded a s  a 

point on any orbit, since the angles may just be measured from the perigee point. 
In the b o  fixed center problem however, the lower limits rl, s2 and 0 may be 
regarded as  a point only on a very special orbit -- namely, one which is simultane- 
ously tangent to the ellipsoid rl and the hyperboloid s2, and this tangency must 
occur in the x-y p h e .  

3 
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To complete the canonical transformation generated by W, the Pi will be 
identified with h, OL and 6 as follows: 

’ 

P1 = Ph = h 

, P 2  = Pg = p 

P3 = Pa = OL 

The conjugate coordinates Qi then become 

(55 )  

In differentiating the integrals in W there are  really three terms for each integral: 
one is the integral of the derivative of the integrand and the other two are obtained 
by evaluating the integrand at  the limits and multiplying by the derivatives of the 
limits. The terms corresponding to the limits vanish, because the upper limits 
are not functions of h, 01 and 8, the integrands for the q1 and q2 integrals vanish 
at the lower limits, and the lower limit of the cp integral is an absolute constant. 

It will be noted that all the integrals occurring in Eq. (56) have forms 
identical with one or another of those occurring in Eqs. (44), (45) and (46) for 
the determination of ql, q2, t and cp as functions of u. The only difference is that 

in reference 6, where the integration of Eqs. (44), (45) and (46) is carried out 
in all detail, the lower limit on u w a s  taken as zero. Here the lower limits are 
roots of R and S . 2 2 

2 2  



Of the three Q Q has a relatively simple interpretation if one replaces dql 
and dq2 by du in accordance with Eq. (44). Then Q becomes 

i' /3 

B 

since the upper limits correspond to a point on the orbit and therefore represent 
the same,value of u. Thus Q appears proportional to the variation in u associated 
with a transit from tangency with a hyperboloid to tangencywithanellipsoid. Since 

B 

. the orbit is not, in general, periodic this statement does not yetuniquely define 
Qp. To arrive a t  such a definition, it may be noted that in terms of the canonical 
variables Pi and Qi the Hamiltonian becomes 

H = h = P 1  
! 

so that the Hamilton equations in these variables are: 
\ ,  . . .  

P1 = P2 = P3 =,h = CL = 6 = 0 
% (59) 

and 

the ref ore 
Qa and Q are  constants and B 
Qh = t + const = t + C (61) 

The values of h, CL and /3 may be obtained from a set of initial conditions. The 
and C may be obtained from the initial conditions also, pro- values of Qa, 

vided it is agreed that the q1 = rl and q2 = s2 a re  to be associated, say, with the 

tangencies to the ellipsoid rl and the hyperboloid s2 closest to the initial point. 
Other identifications of q1 = rl and q2 = s2 will lead to Q's differing from those 
just defined by multiples of the periods K1 and 5. 

&B 
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If one applies the same analysis to Qh and Qa! as  used for Q B (replacing 
dql and dq2 by u), the following expressions are obtained: 

or 

and 



I 

SECTION V - ACTION AND ANGLE VARIABLES 

The action and angle variables are  conventionally defined only 
for conditionally periodic systems, which means that for the two fixed 
centec problem the development can be made only for h < 0. The 
action variables are defined in terms of the generating function W, as 
follows : 

' .  

where the integral for J1 is taken over a complete cycle of variation 
of q1 - i. e. from r to r2 and back to r while that for J2 is over a 
complete cycle of J2 from s to s2 and back to sl. These integrals 
can, for the most part, be reduced to'the forms already encountered 
as follows: 

1 1' 

1 

25 



I '  

A complete cycle of variation q corresponds to a variation in u of 
4 K1. Now the first term in this integral has the form of the dependence 

1 

of the time on ql, and, referring to Eq. (50) it is seen that the periodic 
part F will vanish and hence the contribution of the first term to the 
integral is8 hnlK1. Similarly the last term has the form of the q1 

1 '  

part of the 56 integral, Eq. (51), and will contribute - a 4ml K1. The 
/3 term contributes just - & c /j 4 K1. The only new integral to evalu- 
ate is, 

This integral, too, turns out to be expressible as a linear term in u 
plus a periodic one, so that for the limits given, it contributes a term 
~ ' 2  (p  + p ' )  2,- 4 K where A l  is the coefficient of the linear term. Thus, 
finally, 

1 

J1 = 8 h.n K + 4 ,/2 ( p +  p') A, K1 - 4d2 c 6 K1 - 4 cy ml Kl 1 1  

In an exactly similar fashion 

To obtain the angle variables conjugate to the action variables, it is 
necessary to recall that the original condition imposed on the P. was only 

1 
that they be constants. Identification of the Pi with h, cy, and B is only one 
possibility; any three independent functions of h, Q, and B would serve as 
well and, in particular, it is now desirable to identify Pi with Ji. Now 
the generating function W is given in Eq. (54) in terms of q , q2, a, h,a,B, 
and r and s2. The roots rl and s2 are,  however, functions of h, a and 

8. Now if Eqs. (68) and (69) together'with the third of Eqs. (65) be inverted 
to express h, a, and f l  in terms of J1, ,J2, and J3, it will be possible to 
substitute for h, ~ y ,  and 8 in W to obtain W as a function of ql, q2, q, 
J2, and J3. It should be remarked that the inversion to obtain h, cy, and B 

1 

1 

J1' 
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\ "2, 5, in terms of J1, J2 and J3 is not an easy task since the coefficients nl, 

m are very complicated functions of h, CY and 8 .  Kevertheless the l29 mla "2 
procedure is.'possible in principle and the angle variables w. conjugate t o  the 
J's are given by the partial derivatives of the generating function W with \e- 
spect to the J's: 

1 

aw 
i a j i  w = -  

One may obtain expressions for the wi without' actually performing the inversion, 
by writing the derivatives of W with respect t o  Ji in terms of its derivatives with 

respect to h, CY a acd /3: 

aw aw a h  a w  aa a w  a 6  
i a J i  * a h  a J  a, , a ~ ~  ag. a~~ f -  - -i--- ,w ='--=-- 

i 

* a h  ' a &  ag 
=,Qh q + Q &  "Ji + Q B  aJ i  

from Eqs: (56) defining the varialles conjugzte to h, a ' and  6. Or, recalling 
Eq. (62) for Q,,' 

I 

aa 
+ Qa Tq- wi = ( t  + C) aa i + Q p  a J i  a h  LE. 

where C, Q, and QB a re  constants. 

The derivatives of h, CY and fl may be expressed in terms of the n's, m's, 
R ' s  and K's occurring in Eqs. (68) and (G9) by first obtaining the partials of ,the 
J's. with respect to h, a and 
matrix. The results of this calculation for the Jacobian are 

from Eqs. (65), and then inverting their Jacobian 
* .  

0 2a J 0 
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ld and its inverse is 

L o  0 
d 

(7 4: 

so that, finally 

are the angle variables. 
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SECTION VI - CONCLUSION 

To complete the solution of the restricted problem, it is now necessary to 
express the disturbhg function H2 in terms of the action and angle variables. 
This is a formidable problem. The disturbing function is given in terms of ql, 

q2, cp and their ,conjugate momenta in Eq. (34). The momenta are given in terms 
of ql, q2,- 9, h, a and B by Eqs. (39) so that H2 may readily be written in 
terms of these variables. Starting from the other end, the action variables J1 
and J2 are  given in terms of complicated functions of h, a, and B [ Eqs. (68) 

given by Eq. (75) as linear functions of Qh, Q,, and Q with coefficients which 

and Q 

procedure would'yield the .information necessary to write H2 (w ,  Ji): 

. and (69) 1 while J3 is just 2n Q! c Eqs. (65) l .  The angle variables wi are 

' are functions of h, a, and B similar to those occurring for Ji. And Qh, Q, , 
B 

are related to ql, q2, cp ,  and h, CY, and f i  by Eqs. (56). Thus, the following B 

1. Express K1, s, Al, A 2 ,  nl, n2, ml, 3 as functions of 

h, a, and 8. 

J3 2. 
a = - -  

277 
hver t  Eqs. (68) and (69) using the results of step 1 to obtain 

.h(Ji) and f l  (Ji). 

3. Express K1, 3, Rl, R 2 ,  nl, n2, ml, m2 whichare functions 
of h, 2 and @ in terms of Ji. , 

4. hver t  Eqs. (75) to obtain Qh = t + c, Q and Q as functions 
of the angle variables wi and.K1, 3,' d 1, A2, nl, ni, m 

and m2. 

$ a B . .  
1' 

5 .  Use step 1 to Obtain Q,, Qa * and Q p  as functions of W i  
I 

and Ji. 
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6. Invert Eqs. (56) to obtain ql, q2, a n d 9  as functions of 

Qh, Q a t  Qps hi 01, a d 8 .  

and cp obtained in step 6 In the expressions for q 

and Q using step 5 and h, a, and f i  replace Qh, 
1' q2, 7. 

Q C Y )  B 
using step 2 to obtain ql, q2, and cp in terms of wi 
and Ji. 

8. In the disturbing function H2 (ql, q2, 9, h, a, p ) ,  re- 
place ql, q2, and cp from step 7 and h, a, and ,6 from 
step 2 to obtain, finally, H2 (wi, Ji). 

Steps 1, 2, and 6 are  the difficult ones in this procedure. It is relatively 
easy to write K1 , $, R , nl, n2, ml, and m2 as functions of the roots of 
the quartics and two intermediate parameters which are related to the roots of the 
quartics by transcendental equations. The roots of the quartics are, of course, 
functions of h, CY, and by  but it is not easy to write out these functions explicitly. 
Thus, even step 1 is quite difficult, and to perform the inversion required in step 
2 in closed form appears nearly impossible. 

It should be remarked, however, that, at least for certain types of orbits, 
it should be possible to get fairly good approximations of these steps. For a lunar 
orbit which starts from the earth, closely circles the moon andreturns to the earth, 
it may be shown that CY /2c is very small. This is so because such an orbit has 
very close approaches to the line of centers, and recalling that a is the angular 

2 2  

momentum about the line of centers, it follows that a must be small. If a were 
zero, two of the roots of the quartics would be &l and the other two are  obtained 
in terms of h and p by solving quadratics [see Eqs. (40) and (41) 1. Now it is 
possible to obtain the roots of the quartics for small CY in terms of those for zero 
CY in a series of powers of a. Thus for small a , it is easy to obtain fairly simple 
approximate expressions for the roots in terms of h, a, and p .  Further, it turns 
out that the transcendental equations to be inverted for the intermediate parameters 
a re  very well approximated by just two terms of an expansion. Thus, it is feasible, 
for lunar orbits, to obtain a good approximation to steps 1 and 2. 
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' The complete elliptic integrals 

1. 

8 
I 
8 
I' 
I 
I 
1 
I 

I 
1 
I 
8 
I 

r 2  91 

91 - 1  
? 41 d'* I 2 * b I ,  

and similar ones for q2, have forms very' similar to those obtained by Vinti(8) in 
his model for  the oblate earth. Vinti uaed oblate spheroidal coordinates for his 
model and the close connection between his development and that given in this 
report for the tyo fixed center problem was first pointed out by Pines('). The 
Vinti integrals have recently been evaluated approximately by 1zsak(lo) using a 
technique developed by Sommerfeld (11, 12) for evaluating certain contour integrals 
of functions with branch points. The method ie to expand the integrals in terms of 
a quadratic function and evaluate the series of resulting integrals about contours 
enclosing the roots of tho quadratic. The values of the integrals so obtained are 
explicitly in terms of the coefficients of the quartics. For the method to be valid, 
the expansion must converge over both the origlnal and the final contours. This 
condition is satisfied for Pzsakta expansion of the Vinti integrals. However, none 
of the obvious expansions for the two fixed center integrals converge over the final 
contour. 

\ 

The greatest difflculty in following the procedure for obtaining H2 fs in step 
6. Eqs. (56) relating Qh, Q,, and QB with ql, q2, and cp are transcendental 
equations and it is hard to say how well their inversion could be approximated by 
some approximation procedure, such as the Lagrange inversion $heorem. 

It should be remarked that it would be possible to write H2 in terms of Qh, 

Q , h, 01,  and 0 rather than in terms of 'wi and Yi. This is not done in the 
Kepler problem becauee the relation between t&e original coordinates and time is 
best achieved by a Fourier expansion fn the mean anomaly rather than in t h e .  
An expansion in t h e  would involve far more oomplicated coefficiente. Which set 
of variables will turn out to be better for the two fixed center problem ie bard to ' 
predict at this stage. 

Qat  /3 
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